Installation — business terrible  1 part
September 8th, 2015
For numerical analysis in ABAQUS, the powerlaw representation of the relaxation modulus was fitted and replaced by a fourelement Prony series according to Eq 9, as shown in Fig. 5(b). The fit with Prony series for a reference
temperature of 5 °C is shown in Fig. 5(b). The fit is not exactly identical to the powerlaw representation because, for simplicity, only four elements were used. However, for this investigation, four Maxwell elements are considered to be sufficient. The relaxation times of the four Maxwell elements and the Prony series parameters are presented in Table 3
N+1
m = біЄм
i=1
where E(t) is the relaxation modulus, Ei are Prony series springconstant parameters for the relaxation modulus master curve (spring constants or moduli), and tri are the relaxation times for each Maxwell element.
For 3D multiaxial stress state, it is convenient to describe the stress state with deviatoric and dilatational components. A detailed description is given in Ref 19, a generalized solid Maxwell model is used in ABAQUS to characterize these two stressstate components. The bulk relaxation modulus follows from Eq 10 and the shear relaxation modulus from Eq 11
K(t)=K«M Ki(1 – e*)j (10)
G(t)=G<^1 £ Gi(1 – гЬ)j (11)
where G is shear modulus, K is bulk modulus, t is actual time, tri are relaxation times, Go and K0 are instantaneous shear and bulk elastic moduli, respectively, and Gi and Ki are Prony series parameters.
Assuming constant Poisson’s ratio in the analysis simplifies the problem. This assumption was made in spite of the fact that Poisson’s ratio in viscoelastic materials is generally time dependent. The timedependent Poisson’s ratio of viscoelastic materials can increase or decrease depending on the bulk and shear relaxation with time [17]. However, because the modeling of blister in this study was assumed to remain in the small strain regime, this simplification was considered acceptable. A timeindependent Poisson’s ratio of 0.35 was assumed for MA, and introduced in Eqs 12 and 13 to relate timedependent relaxation modulus to the timedependent bulk and shear relaxation modulus
TABLE 3—Prony series parameters at reference temperature 5 °C.

m
3(1 – 2v)
G(t) = 2(T+v) (13)
As shown in Fig. 5(b), the power function of the relaxation modules was used for determining the parameters of the Prony series for the generalized Maxwell model by curve fitting. Because the master curve is constructed for the reference temperature of 5 °C, the Prony series parameters represent the timedependent shear and volumetric behavior of the material at this particular temperature. The Prony series parameters for 25 °C are determined by shifting the creep compliance data to the reference temperature of 25 °C and by applying a similar procedure as mentioned above. Table 4 lists the Prony series parameters at 5 °C.